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A simple probabilistic model for standard 
air dives that is focused on total 
decompression time. 

H. D. VAN LIEW,  E. T. FLYNN
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Van Liew, Flynn ET. A simple probabilistic model for standard air dives that is focused on total decompression 
time.  Undersea Hyperb Med 2005; 32(4):199-213.   A statistical fit of an algorithm to “calibration data” gives 
parameter values for a “probabilistic decompression model.”  Our objective is to prepare a simple model that 
will estimate risk of decompression sickness (DCS) in air dives.  We develop a logistic regression model 
using calibration data from carefully controlled experimental dives recorded in the U.S. Navy Decompression 
Database. We exclude saturation dives, which can have very long decompression times.  For most depths, 
our model’s prescriptions for 2% probability of DCS avoid the experimental DCS cases without mandating 
excessive time at decompression stops.  Our model indicates that the long decompression times prescribed 
by some previous probabilistic models are not necessary.  Our model cannot be used operationally because 
it cannot calculate depths and times at decompression stops; however, there is general concurrence between 
our model and prescriptions of a deterministic model known as the VVal-18 Algorithm; this supports the 
adoption of the VVal-18 Algorithm for operational use on decompression dives. 

INTRODUCTION

A decompression table tells a diver 
how to minimize the chance of decompression 
sickness (DCS).  For short dives, direct ascent 
to the surface is possible.  For longer dives, 
the diver must spend times prescribed by the 
table at decompression stops that are part 
way toward the surface.   The sum of times at 
decompression stops plus the time required to 
travel to the surface is the “total decompression 
time” (TDT).

Decompression tables can be generated 
from “probabilistic” or “deterministic” models.  
Probabilistic models apply statistical techniques 
to information about whether or not a certain 
dive profile resulted in DCS (1).  Probabilistic 
models imply that the response to decompression 
stress is graded, so that even ostensibly safe 
dives carry a small but finite risk, in contrast to 
“deterministic models,” which are formulated 
from intuition and assumptions about risk 

of DCS and imply that divers are either safe 
or unsafe.  To produce a probabilistic model, 
assumptions about risk are incorporated into an 
algorithm; parameter values of the algorithm 
are estimated by statistical analysis of the dive-
outcome data, sometimes called “calibration” 
or “training” data.

Standard air dives can be defined as 
dives to depths of 25 to 190 feet of sea water, 
gauge (fswg; 1 fsw = 3.063 kPa; 33.08 fswg = 2 
atmospheres absolute), inclusive, with bottom 
times of 720 min or less, where bottom time 
is defined as the elapsed time from leaving the 
surface to leaving the bottom depth.  A recently 
published probabilistic model (2), which we 
will call the “NMRI‘98 Model” (Model 2), 
evaluated at 2.2% probability of DCS (Pdcs), 
prescribes TDTs that are far longer than TDTs 
of experimental standard air dives abstracted 
from carefully documented U.S. Navy dive 
trials (3).  The long TDTs also conflict with a 
deterministic model, the “VVal-18 Algorithm” 
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(4,5).  The NMRI‘98 calibration data includes 
saturation dives (dives longer than a day), which 
can have TDTs that are substantially longer 
than TDTs for standard air dives.  An earlier 
probabilistic model, which we will call the 
“NMRI‘93 Model,” also used saturation dives 
and also prescribes long times at decompression 
stops for reasonable DCS risks around 2% (6).

The objectives for the present work were: 
a) to test whether or not a probabilistic model that 
is based only on standard air dives gives TDTs 
for standard air diving that are as long as those 
found with previous probabilistic models (2,6), 
b) to test the hypothesis that including saturation 
dives may cause a probabilistic decompression 
model to prescribe excessively long  TDTs, c) 
to assess whether the VVal-18 Algorithm (4,5) 
gives appropriate decompression prescriptions, 
and d) to develop a convenient way to estimate 
DCS risk for air dives. 

METHODS

Calibration dataset. 
The U.S. Navy Decompression Database 

(7,8) consists of a number of computer files, each 
representing a particular decompression study. 
We used single-level, non-repetitive, nitrogen-
oxygen experimental dives documented in the 
U.S. Navy Decompression Database to generate 
a dataset for calibration of our “StandAir” 
Model (see Table 1; the date specifies the 
particular version of the file that we used and 
the Cases Pred and % Pred columns preview 
predictions from the statistical fit covered in 
the Results section).  Each of the 19 source 
files contains a series of sequential entries 
that provide information about persons who 
followed a particular dive profile.  Each profile 
entry bears a summary heading that describes 
the profile and its outcome, followed by a 

TABLE 1. STANDAIR CALIBRATION DATASET: DETAILS OF SOURCE FILES 

(1) (2) (3)  (4)  (5) (6)  (7) (8)  (9)

Source file Date Entries
Person
-dives

Cases
Obs

Cases
Pred

  % 
Obs

    %
  Pred

1 DC4D 10/9/97 247 775 19 17.4 2.5% 2.2%
2 DC4W 12/21/93 141 240 8 6.7 3.3% 2.8%
 3 EDU1157 9/23/97 27 46 15 17.7 32.6% 38.5%
 4 EDU1351NL 12/3/96 43 143 2 3.9 1.4% 2.7%
 5 EDU159AVL* 9/30/97 5 11 5 1.1 45.5% 10.0%
 6 EDU545 11/20/97 42 94 18 10.8 19.1% 11.5%
 7 EDU557 5/29/97 135 568 27 51.6 4.8% 9.1%
 8 EDU849LT2 5/5/97 74 141 26 15.8 18.4% 11.2%
 9 EDU849S2 6/27/97 35 60 13 13 21.7% 21.7%
10 EDU885A 12/20/93 82 483 30 24.1 6.2% 5.0%
 11 EDUAS45 1/15/98 10 14 3 2.3 21.4% 16.4%
12 NMR8697 1/29/91 229 477 11 13.9 2.3% 2.9%
 13 NMR97NOD 8/19/97 9 103 3 2.6 2.9% 2.5%
14 NMRNSW 1/29/91 43 86 5 4.5 5.8% 5.2%
15 NSM6HR 12/20/93 19 57 3 2.3 5.3% 4.0%
16 PASA 5/26/92 26 72 5 2.5 6.9% 3.5%
 17 RNPL52BL 7/20/95 27 192 1 6.9 0.5% 3.6%
 18 RNPL57L 7/21/95 50 50 9 3.2 18.0% 6.4%
 19 RNPLX50 9/19/97 16 57 5 7.6 8.8% 13.3%

___ ___ ___ ___ ______ _______

Totals 1,260 3,669 208 207.9
+ 57.9**

5.67%*** 5.67%****

* File EDU159AVL is a modification of file EDU159A based on a re-reading of the report.
** 95% confidence interval
*** = total CasesObs/total Person-dives
**** = total CasesPred/total Person-dives
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series of lines showing the depth/time nodes of 
the profile. 

To prepare our calibration dataset, we 
carefully studied the details of the time and 
depth profiles of each entry, using the heading 
of the entry as a guide.  When the recorded 
information in a profile indicated that there was 
a small deviation from a square-wave exposure 
to depth, we made appropriate corrections so 
that the corrected depth/bottom time pattern 
corresponded approximately to square-wave 
behavior.  All profiles of EDU885A needed 
correction for lags at 7 fswg at the beginning 
of the dives.  For details of our methods for 
adjusting the data, see our other publication 
(3).

We consider “marginal” cases, which do 
not require treatment, to be non-cases.  Of the 
3,669 person-dives in the StandAir calibration 
dataset, 45% are no-stop dives, or nearly so, on 
the basis that their TDT is less than 1.5 times 
that expected for an ascent rate of 30 fsw/min; 
average depth for these is 92 fswg.  To increase 
the size of the dataset, we augmented the air-
breathing dives with 515 no-stop dives (11 
DCS cases) for which the breathing gas at depth 
was a nitrogen-oxygen mixture with inspired 
oxygen fraction (FO2) different from that of air 
(0.21).  For these we calculated an “equivalent 
air depth” (EAD) in fswg to replace the actual 
depth (D) in fswg:  

In the calibration dataset, bottom times 
are 5 to 720 min inclusive, average 98 min; 
depths (or equivalent air depths) are 28 to 300 
fswg inclusive, average 118 fswg; and TDTs 
are 0.6 to 1,445 min inclusive, average 43 min.  
Many ascent rates are 60 fsw/min, whereas 
the rate currently prescribed for the U.S. Navy 
is 30 fsw/min (9).  Figure 1 illustrates the 
distributions of variables.  A statistical model is 
most reliable in regions that have the most data 

points; the reliability of the StandAir Model 
will be low for bottom times greater than 79 
min and for dives with TDTs longer than 20 
min.  Fortunately the bulk of the calibration 
data is in the low-incidence region, which is 
of interest for operational diving: for 80% of 
the person-dives, incidence of DCS estimated 
by the StandAir Model is below 3%; for 63%, 
below 2%; and for 47%, below 1%. 

Statistical analysis:
We use the logistic regression paradigm 

to characterize probability of DCS (pdcs): 
LOGIT is defined as the logarithm of an odds 
ratio: LOGIT+In(Pdcs(1-Pdcs)):

2)

The NONLIN module of a commercial 
statistical program, SYSTAT, allows us to 
use a complex formular for the LOGIT term.  
Equation 3 is the particular LOGIT function 
we use for our StandAir Model.  Symbol D 
represents dive depth in fswg; T is bottom time 

Fig. 1.  Histograms of the calibration data for the 
StandAir Model.

1) EAD = 1. 266 . (1- FO2) . (D + 33) – 33 

1) Pdcs = 1 / (1 – exp(-LOGIT) ) 
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in min; TDT is total decompression time in min; 
and a, b, c, d, f, and g are parameters estimated 
by the logistic regression process. 

3)

     From collective experience, we presume 
that for a given depth and bottom time, TDT is 
by far the most important determinant of DCS 
risk.  The basis for Equation 3 is the obvious 
statement that for dives with depths and 
bottom times outside the region of “no-stop” 
diving, DCS can be avoided by time spent at 
decompression stops.  In no-stop diving there 
is a hyperbolic relationship between dive depth 
and time that can be spent at the depth; this may 
mean that DCS can result from an excessive 
“dose” of depth multiplied by time (D . T). 
We consider that TDT serves as an “antidote” 
to a dose of (D . T) that would be intolerable 
for a no-stop dive.  Thus, for a given (D . T) 
product, probability of DCS is low if TDT is 
large.  We are not able to make any statement 
about whether deep decompression stops 
are more or less effective than the relatively 
shallow stops used by the U.S. Navy because 
all our experimental data are shallow-stop dive 
profiles. 

Figure 2 shows the TDT vs. bottom time 
traces at several depths for a decompression 
table generated by the deterministic VVal-18 
Algorithm (4,5).  All tables we examined in our 
earlier work (3) showed the same pattern: a fan 
of lines seems to radiate from a point on the 
zero bottom-time axis at a negative TDT.  

We used the fan idea and a combination 
of insight with trial and error to devise Equation 
3.  A simple equation for the reciprocal of the 
slope of one of the projection lines in Figure 
2 is Y1 = T/(TDT - g ), where Y1 is defined by 
the equation and g stands for the intersection of 
the line with the TDT axis at zero bottom time.  
The fan shape could be accommodated by

Fig 2.  Bottom time/TDT combinations according to 
the VVal-18 Algorithm for several depths.  Dashed 
projections lines are drawn by eye.

adding depth to the formula Y2 = D . T/(TDT 
- g).   We found empirically that subtracting 
a constant from depth improved the fit of the 
data: Y3 = (D – c) . T/(TDT - g).  To account for 
the expectation that TDT levels off as tissues 
become saturated with inert gas, we changed 
the bottom-time term:  Y4 = (D – c) . [1 – exp(–
d . T)]/ (TDT - g), where d regulates the rate of 
leveling off.  Finally, we raised bottom time to a 
power to allow the possibility that the leveling 
off may not correspond to a single exponential 
function: Y5 =  (D – c) . [1 – exp(–d . T f )]/ (TDT 
- g).  The Y5 formulation gives Equation 3.

For maximum likelihood estimation 
of parameters, the NONLIN module of the 
SYSTAT program uses a LOSS function, an 
alternative to least squares of residuals.  The 
log-likelihood (LL) is specified as the negative 
of the LOSS value.  Equation 4 gives the LOSS 
statement for a single entry of dive-outcome 
data in the dataset; the LOSS function would be 
the sum of all LOSS statements for all entries 
of the dataset. 

1) LOGIT = a + b . (D – c) . [1 – exp(-D  . T f)]/(TDT – g) 
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   4)     LOSS = - DIVES  . [DCS . ln (ESTlMATE)   

 + (1 – DCS) . ln (1 - ESTIMATE)]

 In Equation 4, DIVES is the number of 
person-dives in the group that makes up the 
entry, DIVES multiplied by DCS is the number 
of subjects in the group having DCS, ln is 
natural logarithm, ESTIMATE is the estimated 
Pdcs, and DIVES multiplied by (1 – DCS) is 
the number of subjects in the group without 
DCS.  In our case, the DCS variable is either 
1 or 0 because divers who dived together and 
who did not contract DCS (up to 86 divers in 
a profile) are listed together in the same profile 
entry in the database (DCS = 0), but divers 
who contracted DCS (DCS = 1) are listed 
separately.  Parameter estimation minimizes 
the positive LOSS function, which is the same 
as maximizing the negative LL, by a Quasi-
Newton technique that uses numeric estimates 
of the first and second derivatives of the LOSS 
function to seek a minimum.  In addition to 
estimating parameters, the NONLIN module 
computes asymptotic standard errors (ASE) 
and the asymptotic correlation matrix by 
estimating the Hessian matrix after iterations 
have stopped.

Once the parameters of Equation 3 
are found by statistical analysis, Pdcs can be 
tabulated for D, T, and TDT of each entry in 
the calibration dataset.  To generate a table that 
relates TDT to depth and bottom time at constant 
Pdcs, we find TDT for particular combinations 
of D, T, and Pdcs values; a computer program 
calculates Pdcs over ranges of D, T, and TDT 
by solving Equation 3 for a run of depths and, 
within each depth, for a run of bottom times, 
and within each bottom time, for a run of TDTs.  
The program writes the D, T, TDT, Pdcs, and 
confidence interval to a file when the Pdcs just 
exceeds the predetermined target; the program 
then continues to the next bottom time and 
eventually to the next depth.  

Three kinds of 95% confidence 

intervals are of interest: a) The binomial 
theorem calculates confidence intervals for 
the “true” incidence of DCS in the entire 
population from a limited sample of person-
dives.  b) The SYSTAT program calculates 
confidence intervals for estimated parameters.  
c) We calculate confidence intervals for the 
probability estimates of the model as outlined 
by Ku (10) from the parameters, ASE values, 
and the asymptotic correlation matrix.

To evaluate our completed model, 
we use the grouped dive-outcome dataset 
developed in another communication (3); 
depths of experimental dive trials are rounded 
to the nearest 10 fswg and bottom times are 
rounded to the nearest 5 min.  Traces of a table’s 
instructions on bottom-time/TDT plots are 
compared with the locations of circles (DCS-
free profiles) and triangles (profiles that gave 
rise to DCS).

Combination Model. 
We test the hypothesis that in calibrating 

a model for standard air dives, inclusion of 
saturation dives causes the model to prescribe 
unnecessarily long decompression times.  For 
this test, we deliberately add 240 air-breathing 
saturation dives to the calibration dataset 
used with the StandAir Model to produce a 
“Combination” Model.  Among the saturation 
dives, only 78 are for dives with long TDTs, 
from 1,200 to 2,162 min with average of 1,656 
min.  The rest of the saturation dives are for 
shallower depths that allow much more rapid 
ascents, with average TDT of 5.7 min.  Thus 
only a little more than 2% of the dives in 
the Combination dataset have long TDTs.  
Sources of the saturation dives are ASATFR85, 
ASATNMR, ASATNSM, EDU545, and 
NMR9209 (7,8).  Methods for preparing 
the data are the same as given above for our 
StandAir Model and we use the StandAir 
Model’s LOGIT function, Equation 3. 

A Likelihood Ratio test (LR test) allows 
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a decision about whether groups of data, when 
combined, are described as well as when two 
separate models describe the respective groups 
(11-13).  For use with the LR test, we developed 
a third model, called the OnlySat Model, using 
Equation 3 calibrated only with the saturation 
dives from the Combination dataset; LL was –
64.29.  The parameters of the OnlySat Model are 
not shown here.  The LR test indicates that the 
separate models, OnlySat and StandAir, provide 
a better fit to the data than the Combination 
Model does.  Nevertheless, we continued 
development of the Combination Model to test 
our hypothesis about using saturation dives to 
calibrate a model for standard air dives.  The 
conclusion from the LR test applies only to our 
models.  To find out whether combination of 
non-saturation and saturation dives is advisable 
for other models,  comparable LR tests should 
be carried out.  Indeed, Hays and coworkers 
(11) reported that for certain models, LR tests 
showed that saturation and non-saturation dive 
data should not be combined, but in the same 

publication the authors did combine the two 
kinds of data for another group of models.

RESULTS

Table 2 lists the parameters estimated 
for the StandAir and Combination models by 
fitting Equation 3 to their respective calibration 
datasets; the correlation matrix for the StandAir 
Model is at the bottom of the table.  For both 
models, the differences between the LL value 
and the LL for the null model, in which Pdcs 
equals the DCS incidence in the dataset, have 
high significance by a likelihood ratio test.  
The high ratios of Param/ASE indicate that 
the parameters are tightly estimated.  The 
correlation matrix for the StandAir Model 
shows high correlation between parameters 
c and d.  As seen in Table 1, the StandAir 
Model predicts the 208 cases in the StandAir 
calibration data.  We have not discovered any 
reason for the disagreement between predictions 
and observations for some of the files (see 

TABLE 2.  PARAMETERS FOR THE MODELS 

StandAir Model   LL = -689.144,    Null Model LL = -798.98, incidence = 5.67% 

Parameter Estimate ASE*  Param/ASE
Wald 95% Confidence 

Interval

a -6.022169 0.277405 -21.7 -6.57  –  -5.48 
b 86.596315 18.887942 4.58   49.5  –  123.6 
c 25.091718 2.038656 12.31  21.09 –  29.09 
d 0.002929 0.000832 3.52  0.0013 –  0.0046 
f 0.918547 0.041705 22.0  0.837 –  1.000 
g -170.304442 21.500126 -7.92  -212 –  -128 

Combination Model   LL = -763.395,  Null Model LL = -880.21, incidence = 5.94% 

Parameter    Estimate       ASE*  Param/ASE
Wald 95%  

Confidence Interval
a    -5.792136 0.234149 -24.8 -6.25 – -5.33 
b 134.799017 15.251709 8.80 105 – 165 
c   18.135384  1.477299 12.15 15.2 – 21.0 
d   0.004029  0.000732 5.42 0.00256 – 0.0055 
f   0.782505  0.024983 30.57 0.733 – 0.832 
g -284.304696 31.050956 -8.94 -345 – -223 

Correlation matrix, StandAir Model
a b c d f g

a 1.000 
b  0.132158  1.000 
c  0.427921  0.417632  1.000 
d -0.569450 -0.541532 -0.92333  1.000 
f  0.330143 -0.453320  0.503751 -0.458797 1.000 
g 0.074836 -0.075632  0.739574 -0.580370 0.590638 1.000 

*ASE = asymptotic standard error 
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EDU159AVL, EDU557, EDU849LT2, and 
RNPL57L).  To examine the possibility that 
data from recent dive trials might differ from 
earlier work, we sorted the calibration data into 
two groups, “new” and “old;” we found that the 
StandAir Model fit both sets equally well.

There are many sources of variability in 
the calibration dataset, such as changes in dive 
practice over the years, differences between 
the dives in different test settings (e.g., wet vs. 
dry dives, exercising vs. sedentary subjects, 
warm vs. cool temperature, acclimatized vs. 
non-acclimatized divers, etc), and differences 
in DCS criteria with different investigators.  
When estimated Pdcs is 2%, 95% confidence 
intervals for the StandAir Model show that the 
true Pdcs could actually be somewhere between 
1.1 and 2.9%.  For all Pdcs values of interest, 
the average width of the confidence intervals 
for the StandAir Model is about 60% as 

large as the Pdcs.  Note that the computation 
of confidence intervals by the Ku method (10) 
does not account for number of data points, 
so for practical purposes, the uncertainties in 
data-poor regions, such as regions having long 
bottom times and long TDTs, are probably 
greater than the estimates given by the Ku 
calculation.

 Predictions versus observations. 
 Figure 3 compares estimates from the 

StandAir Model with observed outcomes.  To 
produce the graphs, we sorted the entire dataset 
by a particular variable and then divided the 
sorted set into 7 bins containing approximately 
equal numbers of person-dives.  For optimizing 
parameters, it would be preferable to have the 
DCS cases spread equitably with regard to depth, 
bottom time, and TDT, but Figure 3 shows that 
the bins have unequal numbers of DCS cases.  

Fig. 3.  Incidences as functions of a variable for subdivisions of the data containing equal numbers of person-
dives.  Filled rectangles = observations, with trace to lead the eye; open rectangles = predictions; some of the 
symbols superimpose on each other.  Vertical line segments show 95% confidence intervals, calculated by the 
binomial theorem, around observed incidences.  A: incidences versus depth.  B: same format, but for TDT.  C: 
same format, for bottom time.  D: short bottom times.
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The incidence is high for long TDTs (Figure 
3B) and long bottom times (Figure 3C).  In all 
cases, predicted values follow the observed 
values closely.  The enlargement of the short 
bottom-time range in Figure 3D shows the 
only case in which the predicted incidence is 
outside the confidence interval for the observed 
incidence.  Chi-square values for the plots in 
Figure 3 are 3.2 for depth, 11.0 for bottom time, 
and 8.0 for TDT.  The chance value is 12.6 for 
95% confidence with 6 degrees of freedom, so 
none of the differences are greater than those 
expected by chance.

To obtain the values for the X-axis in 
Figure 4A, we calculated Pdcs for each row in 
the StandAir calibration data, sorted according 
to estimated Pdcs, and then divided the sorted 
data into bins having approximately the same 
number of person-dives.  We then added up 
the numbers of DCS cases predicted by the 
StandAir Model for the dives in each bin.  We 
obtained values for the Y-axis by counting the 
number of DCS cases observed among the 
dives in each bin.  

The data points in Figure 4A approximate 
a straight line but are slightly above the dotted 
identity line for most of its extent and below it 
at the extreme left.  A least-squares trend line 
(see equation) is essentially superimposed on 
the identity line.  Except for the point farthest to 
the right, the horizontal lines for uncertainty in 
predicted incidence are shorter than the vertical 
lines for uncertainty in observed incidence.  
The chi-square value for the DCS cases 
represented by the points in Figure 4A is 7.5, 
and the chance value is 9.5 for 95% confidence 
and 4 degrees of freedom, so the difference 
between observed and predicted DCS cases is 
not greater than expected by chance.  The chi-
square value for the cases represented by the 
three data points in Figure 4B is 7.3, and the 
chance value is 6.0 for 95% confidence and 2 
degrees of freedom.  

In the operationally important low-
incidence region below 3% Pdcs, the model 
predicts higher incidence than is actually 
observed (Figure 4B).  The heavy curve shows 
an equation for the three points that was 

Fig. 4. A: observed incidence of DCS is plotted against incidence predicted by the StandAir Model. Dotted 45o 
line = identity; solid line is the least-squares line through all the points; R2 and the equation for the line are in the 
box; vertical and horizontal lines show 95% confidence intervals around observed and predicted incidences. B: 
low-incidence region of panel A; heavy curve is a least-squares trend curve through three data points (see box). 
See text for explanation of gray circles.
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obtained by a least-squares process; the equation 
of the curve (in the box of Figure 4B) gives 
observed incidence as a function of predicted 
incidence.  It can be seen that at observed 
incidence of 1.0%, the predicted incidence is 
1.6% (lower gray circle); at observed incidence 
of 1.3%, predicted incidence is 2.0% (middle 
gray circle); and at observed incidence of 2.0%, 
the predicted incidence is 2.6% (upper gray 
circle).  The discrepancy between prediction 
and observation is less for 3% incidence.  For 
operational dives with desired incidence around 
1% or 2%, our StandAir Model apparently 
overestimates the risk by about 0.6%.  In other 
work (14), we describe a method for adjusting 
or “fine tuning” probabilistic models in the 
low-incidence region to make them as practical 
as possible for operational use.

Prediction versus observation   
    for grouped test dives. 

In Figure 5, symbols are from our 
previous work (3); they show grouped data from 
trials that resulted in DCS incidence at depths 
between 145 and 154 fswg, rounded to 150 
fswg; bottom times are rounded to the nearest 5 
min.  Black triangle symbols represent a group 

for which it can be said, with 95% confidence, 
that “true” incidence is 5% or higher.  For gray 
triangles, it can be said with 95% confidence that 
the DCS incidence in the group is 2% or higher 
but it cannot be said that incidence is higher 
than 5%.  With white triangles, DCS occurred 
in the group, but confidence statements about 
2% or 5% incidence are not possible, either 
because of insufficient numbers of dives or 
because of innocuous dives.  Small circles are 
for groups in which DCS did not occur.  

According to Figure 5, the StandAir 
Model instructs divers to spend enough time 
at decompression stops to avoid DCS; all the 
table traces avoid all the triangles with one 
exception, a white triangle at 15-min bottom 
time.  In Figure 5A, the trace for the NMRI’98 
Model lies far above the triangles except when 
TDT is very low, above the traces for the Val-18 
table, and above the trace for 2% Pdcs by the 
StandAir Model.  According to the trend curve 
in Figure 4B, the dotted Pdcs trace for 1.6% 
in Figure 5B matches observed incidence of 
1.0%, the dotted Pdcs trace for 2.6% matches 
observed incidence of 2.0%, and the Pdcs trace 
for 3.0% approximately matches the observed 
incidence.  Thus the trend curve of Figure 

Fig. 5.  Table traces and dive outcomes; see text for explanation of symbols.  A: trace for 2% Pdcs according to 
the StandAir Model with heavy gray traces showing 95% confidence interval for the 2% Pdcs trace; labeled traces 
show prescriptions by the NMRI’98 and VVal-18 Models.  B: StandAir Model traces for five Pdcs values.
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4B suggests that the TDTs prescribed by the 
isopleths for 1% and 2% Pdcs in Figure 5 may 
be longer than necessary to give the stated risk 
of DCS; the same can be said for Figure 6.

The pattern of the relationship between 
DCS cases and Pdcs isopleths seen at 150 fswg 
in Figure 5 is repeated over the whole range of 
depths for standard air diving.  Figure 6 shows 
six of the possible 16 graphs for depths from 
40 to 190 fswg at 10 fswg intervals.  In Figure 
6 and in graphs for other depths that have few 
DCS cases (not shown), the positions of the 
table traces and the grouped dive-outcome data 
invite several contentions.  a) The traces for 1, 
2, and 3% Pdcs span a wide range of TDT for 
any given bottom time and the VVal-18 traces 
tend to be close to the StandAir traces for 2% 
and 3% Pdcs.  b) Several of the graphs have 
regions with circles to the left of the 2% Pdcs 
trace and triangles to the right, but these regions 
occur only at low TDTs (see 100 fswg in Figure 
6 for example).  For a satisfying evaluation, 
we would want circles to the left and triangles 
to the right of the table traces at high as well 
as low TDTs in Figure 6, but there are no 

instances of such a configuration.  c) When 
the dive-outcome triangles are in regions with 
relatively high TDT, they are not far below the 
table traces for 3% Pdcs (all panels in Figure 
6).  This suggests that the prescribed TDTs for 
these dives are not too long.  d) Triangles above 
the table traces would strongly suggest that 
the prescribed TDTs are too short.  Except for 
profiles with very low TDTs, no dive-outcome 
points, neither circles nor triangles, are above 
the table traces.  Therefore, this evaluation does 
not yield a definite answer to the question of 
whether the StandAir Model prescribes TDTs 
that are too short.  e) A gray or black triangle 
near a table trace indicates a serious risk of 
DCS, whereas white triangles could be due to 
chance.  In Figure 6, only white triangles are 
near the table traces in the graphs for 60 and 80 
fswg.   A few black and gray triangles are near 
the bottom ends of the table traces; we consider 
dives with very low TDTs and no-stop dives in 
another report (15). 

For an additional evaluation, we 
calculated the Pdcs by the StandAir Model 
for every point in the grouped data that make 

Fig. 6.  Selected depths that have DCS cases near table traces for the StandAir Model;  dive-outcome symbols 
are as in Figure 5.  Solid traces are for Pdcs of 1% (left), 2% (middle), and 3% (right).  Dotted traces are for 
VVal-18 (V).  
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up the evaluation dataset (3), and then plotted 
the difference between observed and expected 
incidence against each of the variables.  These 
graphs (not shown here) did not reveal any 
areas of particularly bad fit with regard to depth, 
bottom time, or TDT.

DISCUSSION

Skepticism and probabilistic   
 models. 

Underlying every decompression model 
is a judgment or belief about how DCS is related 
to the variables — depth, bottom time, TDT, 
and any others that the model entails.  With 
probabilistic modeling, this belief is embodied 
in the algorithm used to fit the calibration 
data.  Previous probabilistic decompression 
models used elements of traditional knowledge 
about the etiology of DCS (1,2,6,16-19).  This 
includes the ideas that the body is composed 
of a number of “tissue compartments” that 
exchange inert gas at various rates, that the 
supersaturation which a particular tissue can 
tolerate without developing DCS is limited, 
and in some models, that diffusive exchange 
of gas bubbles is an important variable (16,17).  
Recent models use time of DCS onset to attempt 
to refine risk estimates more closely (18,19).  
Some variables — e.g., bubbles detected in 
venous blood and the time at which symptoms 
occur — concern the course of the DCS disease 
process rather than the cause of the process, so 
use of such variables in fitting equations may 
not help the model to distinguish between risky 
and safe dives.

There is good reason to be skeptical about 
the prescriptions of a probabilistic model.  The 
framework of relationships between variables 
that is established by the statistical process is 
the essential element of a probabilistic model, 
but the framework may be flawed.  In fitting 
all regions as well as possible, the fit may be 
poor in a region of particular interest, such as 

the operationally important region of low Pdcs.  
Regions that are particularly vulnerable to error 
are at the edges of the range of the model, where 
prescriptions tend to be extrapolations from the 
bulk of the calibration data.  To become aware 
of problem areas, we advocate using observed 
data retrospectively, as in Figures 5 and 6.

The Combination Model.
 Comparison of observed vs. predicted 

DCS incidence in the variables of the 
calibration dataset (analogous to Figure 3) and 
of observed incidence with Pdcs (analogous to 
Figure 4) for the Combination Model show that 
the differences for explanatory variables, or for 
the model as a whole, are greater than expected 
by chance, whereas for the StandAir Model 
the differences are no greater than expected by 
chance.  Figure 7 illustrates how dose-response 
curves for the StandAir and Combination 
Models cross over each other.  In mid-range of 
Figure 7A, the curve for the StandAir Model 
is steeper than the curve for the Combination 
Model, so the curves cross at about 46 min.  

Fig. 7. Sample dose-response curves for the 
Combination and StandAir Models.  Panels B and C 
are scaled to emphasize the low-risk region.  Circles 
show crossover points.

150 fswg,
90 min TDT

0%

20%

40%

60%

80%

100%

0 50 100 150 200
Bottom time, min

Pd
c s

 A
StandAir

Combination

90 fswg, 70 min
bottom time

0%

3%

6%

9%

0 50 100 150 200 250 300
TDT, min

Pd
c s

 C
StandAir

Combination

150 fsw,
90 min TDT

0%

4%

8%

12%

16%

0 10 20 30 40 50
Bottom time, min

Pd
c s

A B

StandAir

Combination



UHM 2005, Vol. 32, No. 4 – Simple probabilistic model for standard air dives.

210

The upper parts of the curves are extrapolations 
beyond the bulk of the data; above 40% Pdcs, 
there are only 39 person-dives in the calibration 
datasets.  In the low-risk region, between 0.5 
and 3% Pdcs, the TDTs prescribed by the 
Combination Model are longer than TDTs by 
the StandAir Model, but the crossovers change 
the situation for hazardous dives.  Thus in 
Figure 7C, the Combination Model prescribes 
longer TDT than the StandAir Model for 2% 
Pdcs (lower dotted horizontal line segment), 
but the upper dotted horizontal line segment 
shows that for 8% Pdcs, the Combination 
Model requires shorter TDT than the StandAir 
Model; TDT is less than half as long.

We conclude that our hypothesis about 
saturation dives is valid: a few saturation dives 
with long TDTs can degrade the fit of a model 
to be used for standard air dives.  We infer that 
the saturation dives act as outlying points that 
bias the model.  For the sample depths shown 
in Figure 8 and for all other depths in the 
range of standard air diving, the Combination 
Model prescribes longer TDTs than does the 
StandAir Model.  For operational dives meant 
to incur reasonable risk, such as Pdcs of 1% or 
2%, excessively long TDTs for ordinary non-

saturation dives would be detrimental in terms 
of time and safety.  Depths of operational dives 
are determined by the job requirement.  Time 
spent at decompression stops would interfere 
with useful work and would prolong the diver’s 
exposure to risks inherent in being underwater.

The long TDTs of our Combination 
Model lead us to suspect that inclusion of 
saturation dives in the calibration data is the 
major cause of the long TDTs of the NMRI‘98 
Model (2) and the NMRI’93 Model (6), 
but the problem may, of course, have other 
explanations.  The issue could be clarified by 
re-estimating the parameters of the NMRI‘98 
and NMRI’93 Models with calibration datasets 
that exclude saturation dives.

As a general principle it would be wise 
to calibrate a model for a given situation with 
data that is limited to that particular situation, 
excluding dive trials that are outside the region 
of interest.  However, exclusion of outlying 
data or other questionable data decreases the 
size of the calibration dataset, with associated 
loss of precision.  To understand the relation 
between size of the dataset and precision, 
we generated a false Combination dataset by 
duplicating each row so the false dataset had 

Fig. 8.  Table traces for 2% Pdcs for the Combination Model (dashed) and the StandAir Model (solid); same 
depths as in Figure 6; dive-outcome symbols are as in Figures 5 and 6.
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twice as many person-dives, but no change in 
balance.  The false dataset yielded the same 
estimated parameters and correlation matrix 
as the original dataset.  The negative LL value 
for the false dataset was double that found with 
the original set and the ASE and the confidence 
intervals of the parameters were 70% of their 
original values.

 Operational diving.
 Our graphs and results of chi-square 

analyses show that the StandAir Model is a 
good fit to the calibration dataset.  In line with 
the Naval Sea Systems Command consensus 
that more than 2 cases of treatable DCS per 
100 dives for non-emergency diving are highly 
undesirable (personal communication, C. A. 
Murray; 2000), we find no cause for concern 
about the StandAir Model’s prescriptions for 
deep dives that have appreciable TDTs; the DCS 
cases for these are below the 2% table traces 
in Figure 6, evidence that the StandAir Model 
is effective in prescribing TDTs that minimize 
DCS.  Apparently the long TDTs prescribed 
by NMRI‘98 and similar models (2,6) are not 
warranted, but this conclusion is weakened 
by lack of dives in the high-TDT region, and 
by the large uncertainties in TDT for a certain 
Pdcs, as illustrated by confidence intervals in 
Figure 5A.  In the absence of data in a depth/
bottom time/TDT region, the model’s estimates 
are extrapolations and interpolations from 
data-rich regions; thus, the StandAir Model’s 
prescriptions for high TDT are projections from 
low-TDT regions. 

For dives shallower than 60 fswg, the 
calibration dataset has 641 person-dives with 
35 DCS cases, but average TDT for these is 
only 3.5 min.  This means that the StandAir 
Model’s TDT values for depths shallower than 
60 fswg are extrapolations from deeper dives 
that have appreciable TDTs.  For shallow dives, 
especially for 40 fswg, we therefore believe 
that the StandAir Model prescriptions for TDTs 

are questionable.
Conventional decompression tables 

generated both by deterministic models 
(4,5,9,20-22) and by probabilistic models 
(1,2,6,16-18) account for the inert gas partial 
pressures in a series of tissue compartments 
during depth/time maneuvers in a dive profile.  
A decompression stop is prescribed whenever 
a compartment is at risk of developing DCS.  
Our simple StandAir Model, generated from 
Equation 3, does not track tissue compartments 
during the dive, so it cannot prescribe 
decompression stop depths and times and 
is therefore not appropriate for operational 
use, although it is appropriate for estimation 
of risk.  However, TDT values prescribed by 
the deterministic VVal-18 Algorithm and by 
our StandAir Model for 2% Pdcs are similar 
for most depths (see Figure 6), an indication 
that the VVal-18 Algorithm is acceptable for 
operational use for most depths.  The TDTs for 
the VVal-18 table tend to be shorter than the 
TDTs that give 2% Pdcs by the StandAir Model; 
the ratio of TDTs (VVal-18/StandAir) averages 
0.87 ± 0.22 (SD).  We can use the StandAir 
Model to generate probability values for the 
depth/bottom-time/TDT profiles prescribed 
by the VVal-18 Algorithm with Pdcs close to 
2% (average = 2.3 ± 0.3% (SD)).  According 
to the trend curve in Figure 4B, Pdcs of 2.3% is 
associated with observed incidence of 1.6%.

CONCLUSIONS

a) Our probabilistic StandAir Model, 
generated from nonsaturation dives only, 
appears to prescribe TDT times that are 
acceptable for standard air diving to most 
depths.  Questionable model prescriptions are 
at the two extremes of the depth continuum: 
there are few dives having appreciable time at 
decompression stops at the shallowest depths, 
and cases of DCS near the StandAir Model 
prescriptions for dives with short TDTs suggest 
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that the model may be too liberal for deep no-
stop dives and for deep dives having short TDTs. 
b) If we are correct in our assertion that the long 
times at decompression stops mandated by some 
other probabilistic models are not warranted, it 
follows that the estimates of Pdcs by the other 
models are not accurate.  c) Estimates using the 
StandAir Model parameters indicate that the 
VVal-18 Algorithm gives Pdcs near 2% and 
therefore is acceptable for operational use to 
most depths.
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